Removal of Nickel Ions from Aqueous Solution by Polypyrrole Conducting Polymer

نویسندگان

  • H. N. M. Ekramul Mahmud
  • Samira Hosseini
  • Rosiyah Binti Yahya
چکیده

Polypyrrole (PPy) conducting polymer prepared by chemical oxidation method using FeCl3.6H2O as an oxidant has exhibited 100% adsorption efficiency for the removal of nickel ions from aqueous solution. At pH 7, 100% nickel absorption was found by the prepared polypyrrole as measured by atomic absorption spectrophotometry. At both acidic and alkaline solutions, the adsorption efficiency of PPy was substantially lowered. The effects of pH, the initial concentration of nickel stock solution and the contact time on the uptake of nickel ions were also investigated. With the variation of initial concentration from 1-5 ppm, the initial concentration of 1 ppm nickel has been found to be adsorbed fully (100%) by the prepared polypyrrole. The contact time of 8 hours has been found to be the highest effective contact hours as beyond this there was no adsorption effect. The FTIR results confirmed the presence of nickel ions in the polymer matrix after adsorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of thiocyanate ions from aqueous solutions using polypyrrole and polyaniline conducting electroactive polymers

Polypyrrole (PPy/Cl) and polyaniline (PAni/Cl) synthesized chemically onto sawdust (SD)was used for removal of thiocyanate (SCN-) ions from aqueous solutions. The effect of someimportant parameters such as pH, initial concentration, sorbent dosage, and contact time onuptake of SCN- was investigated. PPy/SD was found to be much more effective sorbent thanPAni/SD for uptake SCN- from aqueous solu...

متن کامل

Removal of copper ions from aqueous solutions using polypyrrole and its nanocomposites

In this article, preparation of polypyrrole and its nanocomposites as adsorbents werediscussed and the capability of separation of copper ions from aqueous solution were studied.Polypyrrole was prepared by chemical oxidative polymerization method of pyrrole usingFeCl3 as an oxidant. The removal of Cu (II) was investigated using PPy, PPy/TiO2 andPPy/TiO2/DHSNa nanocomposites. The products were i...

متن کامل

Effective Removal of Heavy Metal Ions Zn2+, Ni2+, Cu2+, Cr3+ from Aqueous Solution by Synthetic Superabsorbent Polymer

Heavy  metal  pollution  is  propagating  throughout  the  world  with  the  enlargement  of  industrial activities.  The  elimination  of  heavy  metal  ions  from  industrial  wastewaters  has  drawn  much attention  because  of  the  hazardous  effects  of  the  heavy  metal  ions  on  different  organisms. According to these facts, poly (2, 2, 3, 3- tetracyanocyclopropyl) phenyl acryl...

متن کامل

Synthesis of Starch-Iron Oxide Nanocomposite by Coprecipitation Method and Its Use for Adsorption of Nickel and Cadmium from Wastewater

Backgrounds & objectives: Contamination of the environment by heavy metals, pollute water and agricultural products. The aggregation of these metals will cause various diseases for human. Therefore, it is important to study how to make them safe. The purpose of this study is to evaluate the efficiency of starch-iron oxide nanocomposite in removing two heavy metals, nickel and cadmium, from wast...

متن کامل

Removal of Cd2+ from Aqueous Solution by Nickel Oxide/CNT Nanocomposites

The present work investigates the efficiency of the nickel oxide/carbon nanotube (NiO/CNT) nanocomposite for the removal of Cd2+ metal ions from an aqueous. The NiO/CNT nanocomposite was synthesized by the direct co-precipitation method in an aqueous media in the presence of CNTs. The resulting materials were characterized by FT-IR, XRD, SEM, N2 adsorption-desorption</em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013